《机器学习基石》学习笔记——1.1 the learning problem | 沐雨浥尘

《机器学习基石》学习笔记——1.1 the learning problem

handout slides

Machine Learning Foundations 课程由台湾大学NTU林轩田老师开设,课程共16篇,包括四部分内容:

  • When can machines learn? (illustrative + technical)
  • Why can machines learn? (theoretical + technical)
  • How can machines learn? (technical + practical)
  • How can machines learn better? (practical + theoretical)

下面是Topic 1 Part 1——the learning problem

0. Course Introduction

foundation oriented and story-like

1. What is Machine Learning

  • learning VS Machine Learning
    • learning: observations -> learning -> skill
    • Machine Learning: data -> ML -> skill
  • skill: import some performace measure, 提高某一性能
  • 使用ML的三个关键条件:
    • 事物本身存在某种规律
    • 难以通过简单编程解决
    • 有数据可供使用

2. Applications of Machine Learning

ML is everywhere
食、衣、住、行、育、乐

3. Components of Machine Learning

  • 基本术语
  • hypothesis g VS target f
    • f是目标函数,反映问题的真实规律,但f一般是未知的;
    • g是通过算法A得出的假设函数,我们希望g尽可能与f接近
  • hypothesis set H 假设集,一般一个问题对应了多个假设,这些假设形成假设集H,从H中找出最佳的g。
  • ML流程图
    • 训练数据D满足未知的目标函数f
    • 机器学习的过程,就是根据先验知识选择模型,该模型对应的hypothesis set(用H表示),H中包含了许多不同的hypothesis,通过演算法A,在训练样本D上进行训练,选择出一个最好的hypothesis,对应的函数表达式g就是我们最终要求的。
  • Machine Learning: use data to compute hypothesis g that approximates target f
  • A takes D and H to get g

4. Machine Learning and Other Fields

与ML相关的领域:

  • Data Mining: use (huge) data to find property that is interesting
    difficult to distinguish ML and DM in reality
  • Artificial Intelligence: compute something that shows intelligent behavior
    ML is one possible route to realize AI
  • Statistics: use data to make inference about an unknown process
    many useful tools for ML
Buy me a cup of coffee